

## INDIAN SCHOOL AL WADI AL KABIR

## Assessment - 2 (2023-24)

## **SUB: Mathematics (041)**

Date: 30/11/2023

Set 2

Time Allowed :3 hours

Class: XI

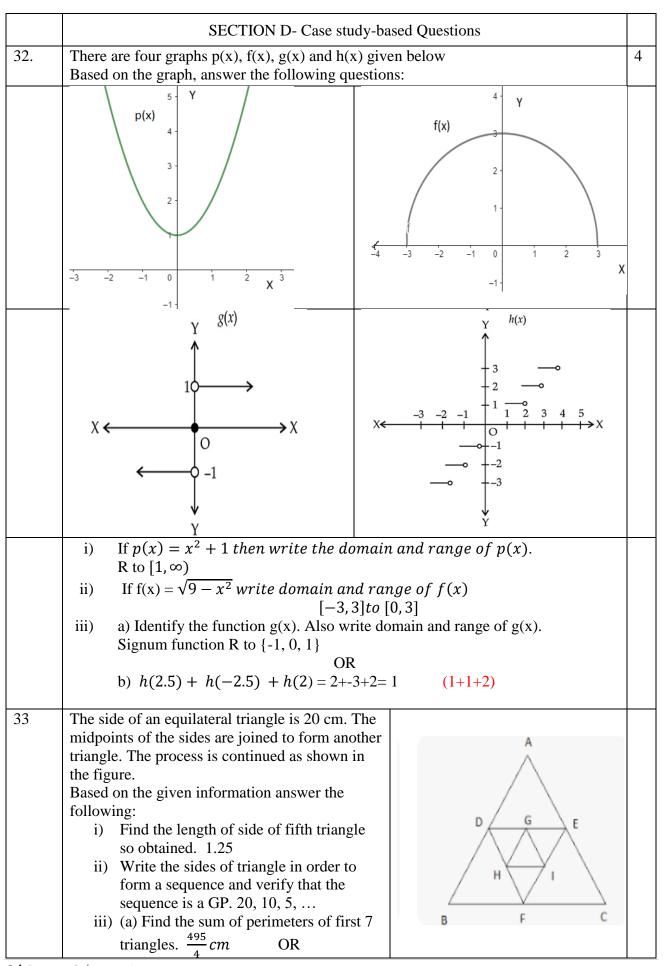
Maximum Marks: 80

General Instructions:

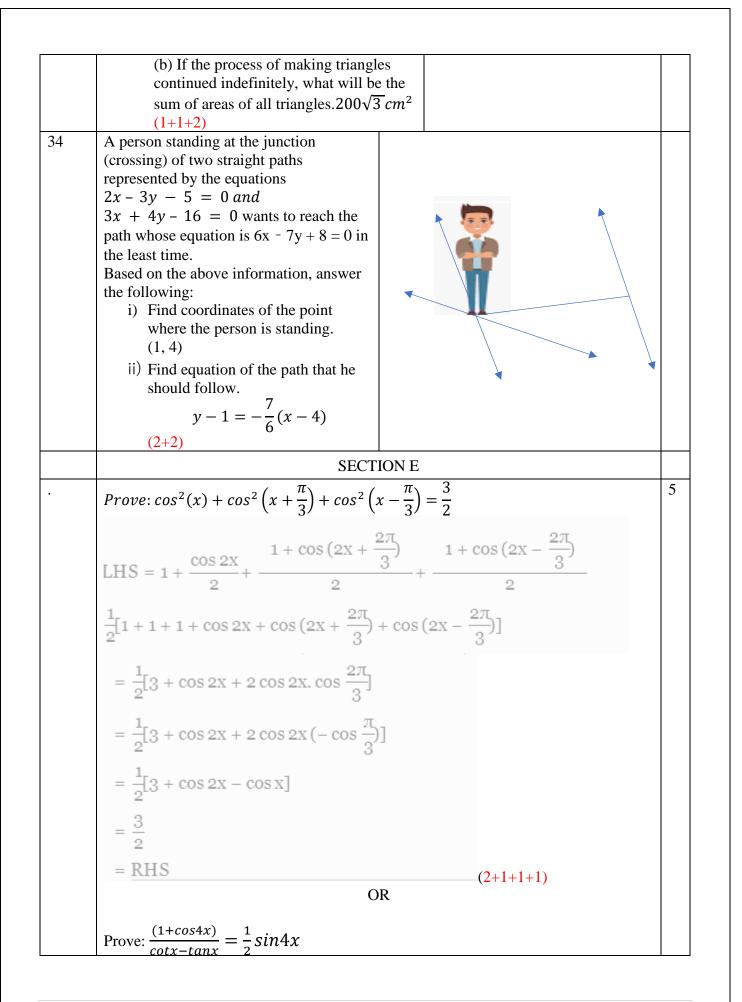
- 1. This Question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
- 3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
- 4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
- 5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
- 6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

| Q. | SECTION A (MCQ)          |                                                                                                                         |                            |                                  |                                                  |                               |       |                     |                      |                   |                    | Ma | ark |
|----|--------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|--------------------------------------------------|-------------------------------|-------|---------------------|----------------------|-------------------|--------------------|----|-----|
| No |                          |                                                                                                                         |                            |                                  | SEC                                              |                               |       | (10 Q)              |                      |                   |                    | S  |     |
| 1. |                          | nd B are dets of A $\cup$                                                                                               | •                          | nt sets                          | and n(                                           | $(\mathbf{A}) = \mathbf{B}$   | 3 an  | d n(B) =            | = 4, then            | the n             | umber of           | ~  | 1   |
|    | Α                        | 0                                                                                                                       | В                          |                                  | 7                                                | C                             |       | <mark>128</mark>    | D                    |                   | 12                 |    | В   |
| 2. | -                        | 0, 1}, B =<br>d a                                                                                                       | -                          |                                  | -                                                | $C = \{x:$                    | x e   | W, x <sup>2</sup> – | $x = 0$ },           | D = ·             | $\{1, -1\}$ , then |    | 1   |
|    | Α                        | A and (                                                                                                                 | <mark>.</mark>             | <b>B</b> A                       | and B                                            | C                             | ,     | B and               | C                    | D                 | A and D            |    | Α   |
| 3. | The su                   | um of n ter                                                                                                             | rms o                      | of the                           | series 5-                                        | +55 + 5                       | 555+  | =_                  |                      |                   |                    |    | 1   |
|    | A                        | <b>A</b> $\frac{5}{9} \left[ \frac{10^n}{9} - n \right]$ <b>B</b> $\frac{5}{9} \left[ \frac{(10^n - 1)}{9} - 1 \right]$ |                            |                                  |                                                  |                               |       |                     |                      |                   |                    |    |     |
|    | С                        | [                                                                                                                       | $\frac{10^{n}}{9}$         | -n                               |                                                  | D                             |       |                     | <mark>5</mark><br>81 | 10 <sup>n</sup> - | - 1) – 9n]         |    | D   |
| 4. | Which                    | of the fo                                                                                                               | llowi                      | ng rel                           | ations a                                         | re func                       | ction | s?                  |                      |                   |                    |    |     |
|    | i)<br>ii)<br>iii)<br>iv) | $\{(1, 1) \\ \{(3, 1) \\ \{(2, 1)\}\}$                                                                                  | 2), (2<br>5), (4<br>1), (2 | 2, 2), (<br>4, 7), (<br>2, 2), ( | 3, 2), (4<br>5, 8), (6<br>3, 1), (4<br>5, 3), (5 | , 2)}<br>, 10), (<br>, 2), (5 | 7,12  | 2)}                 |                      |                   |                    |    | 1   |
|    | A                        | <mark>i and </mark>                                                                                                     | <mark>ii</mark>            | В                                | ii an                                            | d iv                          | С     | i, ii, iii          | and iv               | D                 | iv only            |    | Α   |

| 5.  |                                                                                                                                                 |                            |                         |                  |                   |       |                  |                |                 |            |       |                  |       |                       |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|------------------|-------------------|-------|------------------|----------------|-----------------|------------|-------|------------------|-------|-----------------------|---|
| 5.  | $If f(x) = \begin{cases} 3x - 1, \ 0 \le x < 3\\ 2x + 1, \ 3 \le x < 5\\ x^2 - 10, \ 5 \le x < 8 \end{cases}, x \in W, then f(0) + f(3) + f(5)$ |                            |                         |                  |                   |       |                  |                |                 |            |       |                  | 1     |                       |   |
|     | Α                                                                                                                                               | 25                         | B                       |                  | 21                | C     |                  |                | 19              |            |       | D                |       | -10                   | В |
| 6.  | $If 2Sin\frac{7\pi}{6} - x\cos\frac{2\pi}{3} = 0, then x = \_\_\_$                                                                              |                            |                         |                  |                   |       |                  |                |                 |            |       | 1                |       |                       |   |
|     | Α                                                                                                                                               | -1                         | B                       |                  | $\frac{2}{3}$     |       | С                |                | $\frac{1}{2}$   |            | D     |                  |       | 2                     | D |
| 7.  | If the coefficient of $x^2$ in the expansion of $(1 + x)^m$ is 28, then $m =$                                                                   |                            |                         |                  |                   |       |                  |                |                 |            |       |                  | 1     |                       |   |
|     | Α                                                                                                                                               | 4                          | B                       |                  | 6                 |       | C                | <mark>8</mark> | <mark>3</mark>  |            | D     |                  |       | 10                    | С |
| 8.  | $\cot\frac{\pi}{8}$                                                                                                                             | $\frac{1}{3} = $           |                         |                  |                   | I     |                  |                |                 |            |       |                  |       |                       | 1 |
|     | Α                                                                                                                                               | $\sqrt{2} + 1$             | В                       | $\sqrt{2}$       | $\frac{1}{2} - 1$ |       | С                |                | 1 –             | $\sqrt{2}$ |       | D                |       | $\sqrt{2} + 2$        | Α |
| 9.  | The                                                                                                                                             | equation of                | f a cir                 | cle w            | ith cent          | e (0, | , 2) an          | d rac          | lius 2          | 2 uni      | ts is |                  |       | ·                     | 1 |
|     | Α                                                                                                                                               |                            | x                       | $c^2 + y$        | $y^2 = 4$         |       |                  |                | В               |            | 2     | x <sup>2</sup> + | $y^2$ | $x^2 - 4y = 0$        | В |
|     | С                                                                                                                                               |                            | <i>x</i> <sup>2</sup> - | + y² -           | -4x =             | 0     |                  |                | D               |            | 3     | x <sup>2</sup> + | $y^2$ | $x^{2} + 4y = 8$      |   |
| 10. | 2 <i>x</i> -                                                                                                                                    | $-1  \le 3 ti$             | hen                     |                  |                   |       |                  |                |                 | I          |       | •                |       |                       | 1 |
|     | А                                                                                                                                               | $x \in \{1,$               | 2}                      | B                | <mark>x ∈</mark>  | [—1,  | <mark>.2]</mark> | С              | x               | € [1       | ,2]   | D                |       | $x \in (-1, 2)$       | В |
| 11. | If Al                                                                                                                                           | M and GM                   | of tw                   | o nun            | nbers ar          | e 10  | and 6            | resp           | ectiv           | vely,      | then  | the              | nu    | mbers are             | 1 |
|     | А                                                                                                                                               | 12 and 3                   | В                       | 10 a             | nd 10             | С     |                  | 12             | anc             | l 8        | D     |                  |       | <mark>18 and 2</mark> | D |
| 12. | If n(                                                                                                                                           | $C_2 = nC_{8,}$ fr         | ind n                   | C <sub>3</sub> = |                   |       |                  |                |                 |            |       |                  |       |                       | 1 |
|     | Α                                                                                                                                               | 10                         | В                       | 3                | 45                |       | С                |                | <mark>12</mark> | 0          |       | D                |       | 720                   | С |
| 13. | How                                                                                                                                             | many thre                  | e-dig                   | it nun           | nbers ar          | e the | ere wil          | l all o        | digit           | s dis      | tinct | ?                |       |                       | 1 |
|     | A                                                                                                                                               | 999                        |                         | B                | <mark>648</mark>  |       | С                | 899            | )               |            |       | D                | 7     | 729                   | В |
| 14. |                                                                                                                                                 | e are 10 pc<br>ined from t |                         |                  |                   | poir  | nts are          | coll           | inear           | . Th       | e nu  | mbe              | r of  | f straight lines      | 1 |
|     | Α                                                                                                                                               | <mark>43</mark>            | В                       |                  | 42                |       | С                | 4              |                 |            | D     |                  |       | 90                    | Α |


**2 |** Page6/set |

| 15. |                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | 1                                         |       | •    | (0, 0)         |      |       | 0)              | (0)                  |                  |      | 4 0    |                        |   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------|-------|------|----------------|------|-------|-----------------|----------------------|------------------|------|--------|------------------------|---|
|     | Th                                                                                                                                                                                                                                                                                                                                                                                                                      | le nt            | h term of th                              | ne se | ries | $(2 \times 3)$ | + (5 | o X 9 | 9) +<br>_       | - (8 ×               | 27)              | +(1  | 1×8    | $31) + \cdots 1s$ :    | 1 |
|     | A                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 <i>r</i>       | $n(n+1)^2$                                | B     | 3    | $n(n+1)^{n}$   | ı    | C     | <mark>(3</mark> | 8 <mark>n – 1</mark> | .)3 <sup>n</sup> | D    | (2     | $(n+1)(n+1)^n$         | С |
| 16. | $If \left(\frac{1-i}{1+i}\right)^{100} = a + ib \ then \ a^2 + b^2 = \_$                                                                                                                                                                                                                                                                                                                                                |                  |                                           |       |      |                |      |       |                 |                      |                  | 1    |        |                        |   |
|     | A                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                | 0                                         |       | В    | 4              | C    | 2     | 1               | 6                    | Ι                | )    |        | <mark>1</mark>         | D |
| 17. | Which of the following represents the equation of a line whose sum of intercepts is 1 and product of intercepts is $-6$ ?                                                                                                                                                                                                                                                                                               |                  |                                           |       |      |                |      |       |                 |                      |                  | 1    |        |                        |   |
|     | <b>A</b> $3x + 2y = 6$ <b>B</b> $3x - 2y = 6$ <b>C</b> $-3x + 2y = 6$ <b>D</b> $3x + 2y = -6$                                                                                                                                                                                                                                                                                                                           |                  |                                           |       |      |                |      |       |                 |                      | С                |      |        |                        |   |
| 18. | The equation of the parabola with vertex (0, 0) passing through (5, 2) and symmetric with respect to y axis is                                                                                                                                                                                                                                                                                                          |                  |                                           |       |      |                |      |       |                 |                      |                  | 1    |        |                        |   |
|     | A                                                                                                                                                                                                                                                                                                                                                                                                                       | <mark>2</mark> 2 | $x^2 = 25y$                               | В     | 2y   | $v^2 = 25x$    | С    |       | $25x^2$         | $^{2} = 2^{2}$       | y                | D    |        | $25y^2 = 2x$           | Α |
| 19. | ASSERTION-REASON BASED QUESTIONS<br>In the following questions (19 and 20), a statement of assertion (A) is followed by a<br>statement of Reason (R). Choose the correct answer out of the following choices.<br>A) Both A and R are true and R is the correct explanation of A.<br>B) Both A and R are true but R is not the correct explanation of A.<br>C) A is true but R is false.<br>D) A is false but R is true. |                  |                                           |       |      |                |      |       |                 |                      |                  |      |        |                        |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                         | R) TI            | A (3, 7) B (<br>he slope of<br>oordinate. |       |      |                |      |       |                 |                      |                  | resp | ect to | the change in x        | 1 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | А                                         |       | E    | 5              |      |       | С               |                      |                  |      |        | D                      | В |
| 20. |                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | $i^2 + i^4$<br>or any inte                |       |      |                |      |       | <sup>2</sup> =  | -1.                  | T                |      |        |                        | 1 |
|     | A B C D                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |                                           |       |      |                |      |       |                 |                      | A                |      |        |                        |   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                           |       |      | S              | EC   | 011   | N B             |                      |                  |      |        |                        |   |
| 21. |                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | {-2,                                      | -1,   | 0,1, | 2} – {1,2,     | 3,4, | 5} ı  | ∩ {1            | ,2,3,4               | -, 5} -          | -    |        | $= \emptyset$<br>4= 2) | 2 |


| 22      | Find aquation of a single passing through origin and makes interpents 9 and 6 on y                                                                                                                                                        | 2              |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 22.     | Find equation of a circle passing through origin and makes intercepts 8 and 6 on x axis and y axis respectively.                                                                                                                          | 2              |
|         | Centre $(4, 3)$ and radius =5 (1+1)                                                                                                                                                                                                       |                |
|         | Equation: $(x - 4)^2 + (y - 3)^2 = 5^2$                                                                                                                                                                                                   |                |
|         | $OR \qquad OR$                                                                                                                                                                                                                            |                |
|         | Given that equation of a parabola is $x^2 = 16y$ . Find the coordinates of the focus, axis                                                                                                                                                |                |
|         |                                                                                                                                                                                                                                           |                |
|         | of the parabola, the equation of the directrix and the length of the latus rectum.<br>$F(0, 4) = A \sin X$ and $F(0, 4) = A \sin X$ . |                |
| 22      | $F(0, 4)$ , Axis Y axis, Directrix y=-4, LR =16 ( $\frac{1}{2} \times 4 = 2$ )         Find n and r if $nP_r = 120$ and $nC_r = 20$ (1+1)                                                                                                 | 0              |
| 23.     |                                                                                                                                                                                                                                           | 2              |
|         | r=3 n=6                                                                                                                                                                                                                                   |                |
|         | OD                                                                                                                                                                                                                                        |                |
|         | OR                                                                                                                                                                                                                                        |                |
| 24      | $nC_2 - n = 44$ Solving $n = 11$ (1+1)                                                                                                                                                                                                    |                |
| 24.     | Write the multiplicative inverse of the complex number $\frac{(2-i)^2}{1+7i}$ in standard form.                                                                                                                                           | <mark>2</mark> |
|         | 1770                                                                                                                                                                                                                                      |                |
|         | $\frac{(2-i)^2}{1+7i} = \frac{(-3-4i)(1-7i)}{(1+7i)(1-7i)} = \frac{-25-25i}{50} = \frac{-1-i}{2}  (\frac{1}{2} \times 4=2)$                                                                                                               |                |
| 25.     | Evaluate mean deviation about mean: 4, 7, 8, 9, 10, 12, 13, 17.                                                                                                                                                                           | 2              |
|         | Mean = $10$ (1+1)                                                                                                                                                                                                                         |                |
|         | MD =3                                                                                                                                                                                                                                     |                |
|         | SECTION C                                                                                                                                                                                                                                 |                |
| 26.     | Given: For two finite sets A and B, $n(A - B) = 20 + x$ , $n(B - A) = 3x$ and                                                                                                                                                             | 3              |
| 20.     | $n(A \cap B) = x + 5$ . If $n(A) = n(B)$ , then the value of x and hence $n(A \cup B)$                                                                                                                                                    | 5              |
|         | X=20 (2+1)                                                                                                                                                                                                                                |                |
|         |                                                                                                                                                                                                                                           |                |
| 27.     | n(AUB) = 75                                                                                                                                                                                                                               | 3              |
| 21.     | If $tanA = \frac{p}{p-1}$ , and $tanB = \frac{1}{2p-1}$ then, prove $A - B = \frac{\pi}{4}$                                                                                                                                               | 5              |
|         | $\frac{p}{m-1}$                                                                                                                                                                                                                           |                |
|         | $\tan(A-B) = \frac{\frac{p}{p-1} - \frac{1}{2p-1}}{1 + \frac{p}{p-1} - \frac{1}{2p-1}} = 1  \text{Hence } A - B = \frac{\pi}{4}  (1+1+1)$                                                                                                 |                |
|         | OR                                                                                                                                                                                                                                        |                |
|         |                                                                                                                                                                                                                                           |                |
|         | If $tan A = -\frac{3}{4}$ , $A \in IV$ th Quadrant then evaluate $sin \frac{A}{2}$ and $cos \frac{A}{2}$ .                                                                                                                                |                |
|         |                                                                                                                                                                                                                                           |                |
|         | $LosA = \frac{1}{5}$                                                                                                                                                                                                                      |                |
|         | $\sin \frac{A}{2} = \frac{1}{2}$ and $\cos \frac{A}{2} = -\frac{3}{2}$ (1+1+1)                                                                                                                                                            |                |
|         | $CosA = \frac{4}{5}$<br>$sin\frac{A}{2} = \frac{1}{\sqrt{10}} and cos\frac{A}{2} = -\frac{3}{\sqrt{10}} (1+1+1)$                                                                                                                          |                |
|         |                                                                                                                                                                                                                                           |                |
| 28.     | Solve the inequalities and represent the solution on a number line:                                                                                                                                                                       | 3              |
| 20.     | $5(2x-7) - 3(2x+3) \le 0; 2x + 19 \le 6x + 47 (1+1+1)$                                                                                                                                                                                    | 5              |
|         | $S(2x - 7) - S(2x + 3) \le 0, 2x + 19 \le 0x + 47$ (1+1+1)<br>Solving: $x \le 4$ and $x \ge -7$                                                                                                                                           |                |
|         | Solving $x \le 4$ and $x \ge -7$                                                                                                                                                                                                          |                |
|         |                                                                                                                                                                                                                                           |                |
| 29.     | Using binomial theorem prove that $6^n - 5n - 1$ is divisible by 25 for $n \in N$ .                                                                                                                                                       | 3              |
|         | 6 = 1 + 5                                                                                                                                                                                                                                 |                |
|         | $6^n = (1+5)^n$                                                                                                                                                                                                                           |                |
|         | $6^n = 1 + 5n + 25k$ (1+1+1)                                                                                                                                                                                                              |                |
|         |                                                                                                                                                                                                                                           |                |
| 30.     | Find r if $5(4_{P_r}) = 6_{P_{(r-1)}}$                                                                                                                                                                                                    | 3              |
|         |                                                                                                                                                                                                                                           |                |
|         | $\frac{5\times4!}{(4-r)!} = \frac{6!}{(7-r)!}  (1)$                                                                                                                                                                                       |                |
|         | Solving $r=4$ (2)                                                                                                                                                                                                                         |                |
| I D o g | $e_{6}/set$                                                                                                                                                                                                                               | I              |

4 | Page6/set I

| 31. | If the sum of two numbers is 6 times their geometric mean, prove that the numbers are in the ratio $3 + 2\sqrt{2} : 3 - 2\sqrt{2}$ . (1+1+1) | 3 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------|---|
|     | $a + b = 6\sqrt{ab}$                                                                                                                         |   |
|     | $\frac{(\sqrt{a})^2 + (\sqrt{b})^2 + 2(\sqrt{a} \times \sqrt{b})}{(\sqrt{a})^2 + (\sqrt{b})^2 - 2(\sqrt{a} \times \sqrt{b})} = \frac{4}{2}$  |   |
|     | $\frac{(\sqrt{a} + \sqrt{b})^2}{(\sqrt{a} - \sqrt{b})^2} = \frac{2}{1}$                                                                      |   |
|     | $\left(\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}\right)^2 = \frac{2}{1}$                                                               |   |
|     | $\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{\sqrt{2}}{1}$                                                                       |   |
|     | $\frac{a}{b} = \frac{(\sqrt{2}+1)^2}{(\sqrt{2}-1)^2}$                                                                                        |   |
|     | $\frac{a}{b} = \frac{(\sqrt{2})^2 + (1)^2 + 2\sqrt{2} \times 1}{(\sqrt{2})^2 + (1)^2 - 2\sqrt{2} \times 1}$                                  |   |
|     | $\frac{a}{b} = \frac{2+1+2\sqrt{2}}{2+1-2\sqrt{2}}$                                                                                          |   |
|     | $\frac{a}{b} = \frac{3+2\sqrt{2}}{3-2\sqrt{2}}$ OR                                                                                           |   |
|     | Find three consecutive terms of a GP if the sum and product of these terms are $\frac{13}{3}$ and 1 respectively.                            |   |
|     | Terms $\frac{a}{r}$ , <i>a</i> , <i>ar</i><br>$a^3 = 1$ $a = 1$ $r = 3 \text{ or } 1/3$ Terms 3, 1, 1/3 or 1/3, 1, 3 (1+1+1)                 |   |



6 | Page6/set I



7 | Page6/set |

| 26  | $= \frac{1}{\frac{c}{s}}$ $= \frac{2}{2}$ $= \frac{2}{2}$ $= \frac{1}{2}$ $= \frac{1}{2}$ $= \frac{1}{2}$                                                                                                                                                          | $\frac{2\cos^2 2}{\cos^2 x} - \frac{\sin x}{\cos^2 2x}$ $\frac{\cos^2 2x}{\cos^2 x}$ $\frac{\sin x \cos^2 x}{\cos^2 x}$ $\cos^2 x \cos^2 x$ $\sin^2 x \sin^2 x$ | $\frac{\sin x}{\cos x}$ $\frac{\cos x \sin^2 x}{\cos 2x}$ $\frac{\cos 2x}{2x}$ $x \cos 2x$ $= R. H.$ | $\frac{x}{2x}$                                            |                                                                       | 2+1+1+1)                       |            | othod          |     | 5 |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------|------------|----------------|-----|---|--|--|
| 36. | Class                                                                                                                                                                                                                                                              | 30-40                                                                                                                                                                                                                                                                                   | 40-50                                                                                                | 50-<br>60                                                 | rd deviatio<br>60-70                                                  | 70-80                          | 80-90      | 90-100         |     | 5 |  |  |
|     | f                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                       | 7                                                                                                    | 12                                                        | 15                                                                    | 8                              | 3          | 2              | 50  |   |  |  |
|     | U                                                                                                                                                                                                                                                                  | -3                                                                                                                                                                                                                                                                                      | -2                                                                                                   | -1                                                        | 0                                                                     | 1                              | 2          | 3              |     |   |  |  |
|     | fu                                                                                                                                                                                                                                                                 | -9                                                                                                                                                                                                                                                                                      | -14                                                                                                  | -12                                                       | 0                                                                     | 8                              | 6          | 6              | -15 |   |  |  |
|     | $fu^2$ 27     18     12     0     8     12     18     105                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                         |                                                                                                      |                                                           |                                                                       |                                |            |                |     |   |  |  |
|     | $Mean = 62 \ Variance = 201 \ SD = \sqrt{201} \ (2+1+1+1)$                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                         |                                                                                                      |                                                           |                                                                       |                                |            |                |     |   |  |  |
| 37. | $ (x + 1)^{6} + (x - 1)^{6} = x^{6} + 6x^{5} + 15x^{4} + 20x^{3} + 15x^{2} + 6x + 1 + x^{6} - 6x^{5} + 15x^{4} - 20x^{3} + 15x^{2} - 6x + 1 = 2(x^{6} + 15x^{4} + 15x^{2} + 1) $<br>( $\sqrt{2} + 1$ ) <sup>6</sup> + ( $\sqrt{2} - 1$ ) <sup>6</sup> = 198. (3+2) |                                                                                                                                                                                                                                                                                         |                                                                                                      |                                                           |                                                                       |                                |            |                |     |   |  |  |
| 38. | Find the                                                                                                                                                                                                                                                           | e image of                                                                                                                                                                                                                                                                              | f the point                                                                                          | P (3, 4)                                                  | with respe                                                            | ect to the l                   | ine $2x +$ | y - 5 =        | 0.  | 5 |  |  |
|     | Slope of<br>Equatio<br>Foot of                                                                                                                                                                                                                                     | n through<br>perpendic<br>The vertic<br>area o<br>Find t                                                                                                                                                                                                                                | ugh P = $1/2$<br>P x+2y=-<br>cular (1, 3)<br>ces of $\Delta ABC$<br>of $\Delta ABC$ =<br>he equatio  | 5<br>) Imag<br>3 <i>C</i> are <i>A</i><br>: 11<br>n of me | e (-1, 2)<br>OR<br>4(0, 4), <i>B</i> (3<br>dian AD. 1<br>e passing th | D(2, -1) a                     | nd Equati  | ).<br>on 5x+2y |     |   |  |  |
|     |                                                                                                                                                                                                                                                                    | BC eq                                                                                                                                                                                                                                                                                   | uation 3x-                                                                                           | -y-7=0 a                                                  | and distance                                                          | $e = \frac{11}{\sqrt{10}} (1)$ | +2+2)      |                |     |   |  |  |

\*\*\*\*\*\*\*